|
Hi Daniel Calculations for the reduced spectral density mapping need only the R1, R2 and NOE at one field. R1, R2 and NOE are 3 variables you measure and you extract 3 parameters from them. This is only a simple calculation using in relax the equations that follow : j0 = -1.5 / (3.0*d + c) * (0.5*r1 - r2 + 0.6*sigma_noe) jwx = 1.0 / (3.0*d + c) * (r1 - 1.4*sigma_noe) jwh = sigma_noe / (5.0*d) where j0, jwx and jwh are, respectively, the spectral density at the zero frequency, at the nitrogen frequency (in the special case where you work with 15N relaxation) and at the apparent proton frequency (sometimes called J(wH) or J(0.87wH) ). The other constants and variables are : c = CSA constant d = dipolar constant sigma_noe = cross-relaxation rate (calculated using NOE and R1) That said, you can extract spectral densities using data from different magnetic fields at the same time. This only changes the obtained value for J(0), as J(wN) and J(wH) are field dependent... For example, if you have data at three fields, you would get 1 value for J(0), 3 values for J(wN) and 3 values for J(wH). This approach is not yet implemented in relax, but it could be something useful. In fact, it's something I personally would like to contribute when I have time, maybe this fall... However, calculating J(0) using different fields in separated calculations is something useful you may want to do prior to any calculation using multiple field data. The reason is that J(0) should be field independent, in cases where us-ms motions (Rex in the model-free language) are not present. Thus, calculating J(0) helps you assess the quality of your data. This is quite important as different factors may influence the consistency of your data acquired at different magnetic fields... A part of relax is specially designed to do 3 different consistency tests : J(0), Fn and FR2. Those consistency tests are implemented in a special branch of relax which contains, apart from that, all the same functions. A sample script is also available as for other functions within relax. You can get that version of the program with svn by typing : svn co http://svn.gna.org/svn/relax/branches/consistency_tests_1.2/ . Some of the topics in that mail were already discussed some time ago... You can find useful information on reduced spectral density mapping by reading the following post : https://mail.gna.org/public/relax-users/2006-11/msg00019.html Also, some interesting information on consistency tests is available at : https://mail.gna.org/public/relax-devel/2007-06/msg00008.html I hope this helps you out !! Cheers Sébastien :) Daniel Perez wrote: Hi Ed, Basic question, relax only consider the relaxation data from one field to calculate the reduced spectra density mapping at three frequencies. Shouldn't one use at least three independent data sets (three fields) to calculate these three parameters. Best Regards Daniel relax-users-request@xxxxxxx wrote:Send relax-users mailing list submissions to relax-users@xxxxxxx To subscribe or unsubscribe via the World Wide Web, visit https://mail.gna.org/listinfo/relax-users or, via email, send a message with subject or body 'help' to relax-users-request@xxxxxxx You can reach the person managing the list at relax-users-owner@xxxxxxx When replying, please edit your Subject line so it is more specific than "Re: Contents of relax-users digest..." Today's Topics: 1. Re: Reduced spectral density mapping (Edward d'Auvergne) 2. Re: Convergence on different systems (Edward d'Auvergne) ---------------------------------------------------------------------- Message: 1 Date: Sun, 3 Dec 2006 01:50:45 +1100 From: "Edward d'Auvergne" <edward.dauvergne@xxxxxxxxx> Subject: Re: Reduced spectral density mapping To: "Sebastien Morin" <sebastien.morin.1@xxxxxxxxx> Cc: relax-users@xxxxxxx Message-ID: <7f080ed10612020650v35859880kb06b327442d6fda5@xxxxxxxxxxxxxx> Content-Type: text/plain; charset=WINDOWS-1252; format=flowed Hi, Reduced spectral density mapping is a direct calculation of the spectral density values, there is no optimisation. The only part where optimisation could be used, but is not necessary, is in the calculation of the single J(0) value using data at multiple field strengths. See Kroenke et al., 1999 for details (Kroenke, C. D., Rance, M. and Palmer, A. G. (1999). Variability of the 15N chemical shift anisotropy in Escherichia coli ribonuclease H in solution. J. Am. Chem. Soc. 121, 10119-10125). relax can't do this yet though (although anyone is free to add that feature). Edward On 12/2/06, Sebastien Morin <sebastien.morin.1@xxxxxxxxx> wrote: --
______________________________________
_______________________________________________
| |
|| Sebastien Morin ||
||| Etudiant au PhD en biochimie |||
|||| Laboratoire de resonance magnetique nucleaire ||||
||||| Dr Stephane Gagne |||||
|||| CREFSIP (Universite Laval, Quebec, CANADA) ||||
||| 1-418-656-2131 #4530 |||
|| ||
|_______________________________________________|
______________________________________
|