mailRe: Model selection and local_tm


Others Months | Index by Date | Thread Index
>>   [Date Prev] [Date Next] [Thread Prev] [Thread Next]

Header


Content

Posted by Edward d'Auvergne on March 31, 2008 - 11:28:
Hi,

Please see below for my replies.

On Fri, Mar 28, 2008 at 2:59 PM, Carl Diehl <Carl.Diehl@xxxxxxxxx> wrote:
Hi.
 I used the full_analysis.py script for testing and evaluating relax in
 comparison with published data.

 The system was calcium-loaded Calbindin D9k, with R1 & NOE at 600 MHz
 and R2, R1 & NOE at 500 MHz. The relaxation data is of very high
 quality. The model selection was done using home-written software, so no
 ordinary model selection à Modelfree.

What do you mean by model selection?  Did you use a different
technique from the statistical field of mathematical modelling and
model selection?  Did you use a frequentist method, a Bayesian method,
or hypothesis testing methods (the last of which is described in
textbooks from this field of knowledge as being very, very bad)?  Did
you use this to select between model-free models, diffusion models, or
the combined global model (model-free + diffusion)?


 After running full_analysis.py (removing excess models),

By 'removing excess models', do you mean eliminating failed models?
What is an excess of models?


model selection
 gives me local_tm as the best model for the diffusion tensor. Previous
 calculations (both 15N and 13C relaxation data) indicates that the
 diffusion tensor is to a good approximation, isotropic (only a very
 slight anistropy).

What does 'good', 'slight', etc. really mean?  For a mathematical
modelling perspective, I don't understand these.  Is a Da of
1.001+/-0.001 slight, or 1.2+/-0.01, or 1.6+/-0.3?  From my
experience, my opinion is that unless all the bond vectors point in
the same direction, isotropy will never be statistically significant
over the spheroids and ellipsoids.


 Looking at the local_tm values for the secondary structure, most of them
 have a local_tm which is similar to the isotropic tensor.

If you used AIC or BIC model selection between the two models, what
are the chi-squared values, criteria values, and parameter numbers for
each model?  In the test, did you compare the local_tm model to the
isotropic model?  Or did you compare the local_tm model to the
isotropic, 2 spheroids, and ellipsoid simultaneously?  Again, what is
the qualifier most?  And how do the non-conforming residues not
conform?


 Is the local_tm model always correct? For a well folded protein, one
 would expect that the local_tm model should be invalid?

As this is mathematical modelling, there is no such thing as an
invalid model.  By definition of the term model, a model is an
approximation of something far more complex.  Therefore there is only
a grey scale of how good a model approximates reality (of course we
can never know what is reality).  For a folded, single domain,
globular protein (with no significant, floppy loops), then the sphere,
spheroids, or ellipsoid should be a good description and the local_tm
model will not be selected.  Could you reproduce the model selection
statistics for all 4?  If the local_tm model is chosen, then it is an
indication that something is not normal - quite possibly interesting
dynamics.  Unfortunately, there's not enough information in your post
for me to tell you exactly what happened.  One point that concerns me
is that you only have an R2 measurement at a single field strength.
Note that to differentiate between chemical exchange effects (which
are scaled quadratically with field strength) and internal nanosecond
motions (constant at different fields) and anisotropic tumbling of the
molecule (again constant), you really need the R2 collected at 2
fields.  But this may not necessarily be the reason you're seeing the
local_tm model being selected.  I'm sorry that I am not yet able to
give you a clear answer.

Cheers,

Edward



Related Messages


Powered by MHonArc, Updated Mon Mar 31 11:41:58 2008