Subsections

The correlation time Hessians of the spheroid

τm - τm partial derivative

The second partial derivatives with respect to the geometric parameter τm twice are

\begin{subequations}\begin{align}
\frac{\partial^2 \tau_{-1}}{{\partial \tau_m}^...
...{-3} (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-2}.
\end{align}\end{subequations}

τm - $\mathfrak{D}_a$ partial derivative

The second partial derivatives with respect to the geometric parameters τm and $\mathfrak{D}_a$ are

\begin{subequations}\begin{align}
\frac{\partial^2 \tau_{-1}}{\partial \tau_m \c...
...{-2} (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-3}.
\end{align}\end{subequations}

$\mathfrak{D}_a$ - $\mathfrak{D}_a$ partial derivative

The second partial derivatives with respect to the geometric parameter $\mathfrak{D}_a$ twice are

\begin{subequations}\begin{align}
\frac{\partial^2 \tau_{-1}}{{\partial \mathfra...
...&= 8 (6\mathfrak{D}_{iso} + 2\mathfrak{D}_a)^{-3}.
\end{align}\end{subequations}



The relax user manual (PDF), created 2019-03-08.